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Abstract

This experiment examines how three different problem-solving algorithms
commonly used in artificial intelligence for searching for solutions compare
when applied to the popular puzzle game 2048: Monte Carlo Tree Search, Ex-
pectimax, and Minimax. The game’s premise is to combine numbered tiles to
achieve a tile with a total of 2048. Game play can proceed past this, terminat-
ing when the 4x4 board is filled with tiles and no moves can be made. In nearly
3000 trials divided between the three algorithms, it is evident that there is a
linear correlation between the number of moves completed and the total score
achieved in a trial. The greater rate of change in total score compared to the
number of moves made suggests that the given algorithm chose an action that
resulted in a greater score increase. Analyzing the three algorithms with three
metrics, the average score of the trials, the highest score achieved, and the
slope of its trials when the total score is plotted against moves made allows for
comparison between the Monte Carlo Tree Search, Expectimax, and Mininax
algorithms. The Monte Carlo Tree Search resulted in a median score of 16,492,
a high score of 60,628, and a slope of 18.54 points per move. Expectimax trials
had a median score of 11,444, a high score of 34,620, and the lowest points
per move of 16.39. Minimax had the highest median score of 18,048, a high
score of 78,536, and a slope of 22.26 points per move. It should be noted that
the slope was extracted using a linear regression model fitted to the trial data
for each algorithm excluding outliers which were classified as data points that
deviated from the first and third quartiles by more than 1.5 times the inter-
quartile range. Thus, it seems that Minimax performed the best in solving the
2048 game.
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Introduction

Rules of 2048

2048 is a popular online ’slide and merge’ style game, developed by Gabriele Cirulli.
The game is centralized on a 4×4 grid populated with small colored tiles. The
game begins with two tiles that start as 2 but have a 10% chance of being 4[15].
The player can move these tiles in one of four directions: up, down, left, and right.
However, there are legal and illegal moves that limit movement. Legal moves are
any moves in which at least one tile slides, or merges into another tile, in one of
the four directions[6]. When two tiles merge, with the same value v, the two tiles
are removed and replaced with a new tile in the position of the stationary with a
value of 2v. Thus the tiles grow at a rate of 2k k >= 1 [6]. This does give a hard
upper limit as there is a finite amount of space. Therefore the game will always
terminate, however, it’s far more likely the player will get stuck in a terminal state.
The terminal states for 2048 are when the player has no more legal moves.

2048 in Game Theory

2048 has elements of both combinatorial and stochastic puzzles. A Combinatorial
puzzle is defined as a single-player sequential game with no randomness or hidden
information [3]. These kinds of puzzles give us a great structure to design algorithms
to beat a specific game. Trees are naturally a good representation of this game’s
search space since each state’s four actions lead to four ”branches” of potential
future states, subdividing into a sequence of moves. [3]. However, 2048 violates
one of the rules–randomness. The new tile placement is completely random along
with the value within. A stochastic puzzle in contrast incorporates an element of
randomness, and the outcome is non-deterministic. More specifically 2048 is NP-
Hard (nondeterministic polynomial) amount of time to solve, along with PSPACE, or
polynomial amount of space[2][3][7]. Both of these refer to computational complexity
theory, neither of which we will cover in detail. Nonetheless, it’s critical to understand
the computational complexity constraints as it explains why the problem is one of
decisions, not optimality. For example, just the initial state of the game alone has 360
possible combinations. Some of these starting states can be seen in Figure 1. This was
calculated by taking the three combinations of starting tiles, (2, 2), (2, 4), and (4, 4)
times the number of combinations for the initial state,

(
16
2

)
= 120. Mathematically

speaking, the highest plausible value for a tile is exactly 217, or 131, 072 [4][6].
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Figure 1: Sample of initial states [8] Figure 2: Initial values of starting tiles [8]

Background

2048 Strategies

The randomness in where tiles spawn, the value that those tiles take, and the large
branching factor from the different actions that can be taken result in an extensively
vast search space. Due to this, traditional tree search algorithms such as depth-
first search (DFS) or breadth-first search (BFS) are ineffective and highly inefficient.
Other methods that have been employed are machine learning neural networks as
well as more conventional reinforcement learning systems [6]. However, both need
vast amounts of training data and training time [12]. Thus, traditional tree search
algorithms have the advantage of not requiring any training time albeit at a higher
runtime memory cost. Hence, algorithms such as Monte Carlo Tree Search, Expec-
timax, and Minimax are better-suited approaches since decisions on what action to
take from each state are made based on evaluation functions during runtime, instead
of information gathered from previous experiences [12]. These evaluation functions,
heuristics, are critical for the algorithm’s efficiency. While the branching factor is
low, the depth and randomness make evaluation game states increasingly difficult
and expensive [13, 6]. A common evaluation function uses matrix multiplication
between the values of the game board and a weight matrix (one that defines how
desirable each position on the board is). The weight matrix being used in these
experiments can be seen in Figure 3

Monte Carlo Tree Search

Unlike traditional tree search algorithms, Monte Carlo Tree Search is applicable in
large spaces as it aims to explore only promising areas of the search space informed by
its heuristic as opposed to BFS and DFS which attempt to exhaust the entire space.
Monte Carlo Tree Search operates in four distinct phases: selection, expansion, sim-
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ulation, and back-propagation. In the selection phase, the algorithm traverses the
search space tree by using a best-first approach, prioritizing nodes that evaluate to
the highest value. Expansion involves generating successor nodes from the possible
actions to be taken from the current state, expanding the tree. During the simu-
lation phase, different actions are taken to simulate the outcome of taking a series
of actions. In back-propagation, the algorithm then uses information learned from
simulations to update previous nodes to reflect the simulated outcomes[16] better.
In regards to its applications to the 2048 game, there is a vast history of research
for this algorithm. There is precedent for evaluation functions that can be applied
to each state, and its application to these algorithms[9]. A key finding for this ap-
plication is that back-propagation is especially important in generating a maximal
solution [17]

Expectimax and Minimax

The Minimax algorithms is widely used in game theory and artificial intelligence,
typically two-player zero-sum games with perfect information. The algorithm oper-
ates by applying an evaluation function for each state to quantify its desirability for
each player and determines what action each player would make under the assump-
tion they are playing rationally. Dating back over 70 years, Minimax has been used
to solve popular games like chess and tic-tac-toe. [14]. Alpha-beta pruning is a mod-
ification to the algorithm that ”prunes” branches in the search space that will not
change the outcome of the algorithm and therefore do not need to be traversed. This
technique has been widely used, and is proven to still generate the same outcome as
Minimax without pruning [5]. The shortcoming of Minimax is that it doesn’t fit for
games without perfect information. Thus came Expectimax, an expansion on the
Minimax algorithm. In 1966, Donald Michie introduced this variation of the original
approach that incorporates chance nodes[11]. Thus, it can be applied to games with
an element of randomness like Mahjong, Poker, and 2048. Like Minimax, Expecti-
max can be made more efficient by pruning, gamma-pruning in this case [10]. There
is precedent for this approach being used for 2048. One study applied depth-limited
Minimax and depth-limited Expectimax to 2048 and found that Expectimax at a
search depth limit of 3 outperformed Minimax at a depth limit of 8 [18].
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Approach

Evaluation Function

The matrix depicted in Figure 3 is the weight matrix used to evaluate the game
state for a 4×4 board. These values prioritize a snake pattern; A common approach
among real players. This strategy favors keeping higher-value tiles, which are less
likely to merge turn by turn, to stay out of the way of smaller tiles. The tiles can
then be sequentially merged to produce the greatest possible tile from those available
on the game board. Figure 4 shows an example of this. From the upper left corner,
tiles are in descending order along the path that ”snakes” around the board. Since
this evaluation function mimics a real-life strategy, it is possible to improve upon
the weights assigned to each tile with the use of genetic algorithms, reinforcement
learning, or machine learning to improve game outcomes.[1].


10 8 7 6.5
0.5 0.7 1 3
−0.5 −1.5 −1.8 −2
−3.8 −3.7 −3.5 −3


Figure 3: Evaluation Matrix

Figure 4: An example of the 2048 snake
pattern strategy

Monte Carlo Tree Search

Monte Carlo Tree Search runs numerous simulations using randomly generated moves.
During the simulated run, it will select a random move and apply the move to the
simulated game state. Then it will return the move and score. These return values
are used in conjunction with the other simulations. Thus allowing the agent to select
the best move from all the simulated runs. This will repeat until the agent reaches
a terminate state, where it will return.
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Algorithm 1 Monte Carlo Simulation

1: function MonteCarlo(runs, game)
2: while game.canContinue() do
3: scores← {0, 0, 0, 0}
4: counter ← {0, 0, 0, 0}
5: for i← 1 to runs do
6: (best move, score)← simulateOneGame(game)
7: scores[best move] += score
8: counter[best move] += 1
9: end for
10: best move← SelectBestMove(scores, counter)
11: game.makeMove(best move)
12: end while
13: end function

Algorithm 2 Simulation of One Game

1: function SimulateOneGame(game)
2: game cpy ← game
3: first move← −1
4: while game cpy.canContinue() do
5: before state← game cpy.state
6: move bank ← {UP,DOWN,LEFT,RIGHT}
7: while before state == game cpy.state do
8: random pos← DISTS[move bank.size()− 1](rng)
9: chosen move← move bank[random pos]
10: MakeMove(game cpy, chosen move)
11: if first move = −1 then
12: first move← chosen move
13: end if
14: move bank.erase(move bank.begin() + random pos)
15: end while
16: end while
17: return (first move, game cpy.score)
18: end function
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Search

Before explaining the Expectimax and Minimax codes, we need a search process for
these algorithms to return to. The following pseudo-code is abstracted to reduce
redundancy as they are largely the same. The main idea is to continue to select the
best move scored by Expectimax or Minimax until it reaches a terminal state.

Algorithm 3 Search

1: function Search(depth, game)
2: while game.canContinue() do
3: possibilities← ComputePossibilities(game)
4: scores← {}
5: for (move, weightedmoves)← possibilities do
6: totalScore← 0
7: for (probability, nextGame)← weightedmoves do
8: score← Expectimax(depth, nextGame, true)
9: score←Minimax(depth, nextGame)
10: totalScore += probability × score
11: end for
12: scores[move]← totalScore
13: end for
14: bestMove← SelectBestMove(scores)
15: game.makeMove(bestMove)
16: end while
17: end function

Expectimax

Expectimax is a variant of Minimax but it is used to maximize a given value. In
the case of 2048 that would be to maximize the score of the agent. It does so
by exploring a search tree up to a specific depth. During this search, it has two
branches: maximizing and minimizing. The maximizing does exactly that, taking
the max value between the current best score and the current score. The minimizing
does something similar, however, it returns the average of the expected value with
respect to the probability. Once it has reached its maximum depth, it will return
recursively. This returned value is used by the search function to determine which
move has the best future outcomes.
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Algorithm 4 Expectimax Algorithm

1: procedure Expectimax(state, depth,maximizingP layer)
2: if depth = 0 or state is terminal then
3: return Evaluate(state)
4: end if
5: if maximizingP layer then
6: bestV alue← −∞
7: for move in GenerateMoves(state) do
8: value← Expectimax(Result(state,move), depth− 1,False)
9: bestV alue← max(bestV alue, value)
10: end for
11: return bestV alue
12: else
13: expectedV alue← 0
14: totalProbability ← 0
15: for move in GenerateMoves(state) do
16: probability ← Probability(move)
17: totalProbability += probability
18: expectedV alue += probability× Expecti-

max(Result(state,move), depth− 1,True)
19: end for
20: return expectedV alue

totalProbability

21: end if
22: end procedure

Minimax

Minimax is very similar to Expectimax, however, it has it assumes that the mini-
mizing player is playing optimally. This is different from Expectimax as it assumes
the adversary is random. In the case of 2048, it means the search algorithm will take
the minimum between the best value and the current value. This is different than
Expectimax as it took the average in the minimizing branch. Nonetheless, the search
is nearly identical besides that small exception. Thus why a similar search function
can be used for both algorithms.
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Algorithm 5 Minimax Algorithm

1: procedure Minimax(state, depth,maximizingP layer)
2: if depth = 0 or state is terminal then
3: return Evaluate(state)
4: end if
5: if maximizingP layer then
6: bestV alue← −∞
7: for move in GenerateMoves(state) do
8: value← Minimax(Result(state,move), depth− 1,False)
9: bestV alue← max(bestV alue, value)
10: end for
11: return bestV alue
12: else
13: bestV alue← +∞
14: for move in GenerateMoves(state) do
15: value← Minimax(Result(state,move), depth− 1,True)
16: bestV alue← min(bestV alue, value)
17: end for
18: return bestV alue
19: end if
20: end procedure

Experiment and Results

Experiment Design

To carry out our experiment an existing 2048 base game code in C++ was employed.
Using a clone of the game allowed direct access to game mechanics instead of working
through the graphical user interface. Additionally, this allowed the simulations to run
concurrently as they did not rely on visual feedback. The code base did require some
modifications to ensure the desired algorithms would work as intended. Additionally,
there were trackers for key statistics needed for Analysis. Once all modifications were
working and tested, a C script was created to run games concurrently by spawning
batches of processes to run the simulations. The experiment was carried out on a
2021 M1 Pro processor with 16 GB of onboard memory. To gather all our data we
will implement both a 2048 game with a solver as well as a script to continues run
our solvers. The 2048 game will be based on an existing code base written in C++

9



based on a Python code base. This choice was made for two core reasons: speed and
programming familiarity.

Selected Depths

Before starting the experiment, some small preliminary tests were done to find suit-
able parameters for our algorithms. The parameters are the depth for Minimax and
Expectimax along with the number of random simulations for Monte Carlo Tree
Search. To find suitable parameters for both, Expectimax and Minimax were run
several times with varying depths. A similar approach was done for Monte Carlo Tree
Search with the number of simulations. In an attempt to make sure it was a fair
comparison, the total time for a game was used as a target. Additionally, the depth
and number of simulations needed to at least be large enough to give the agents a
fighting chance to win. However, the values couldn’t be too large otherwise the time
to complete a trial would be impracticable. Thus the depth of 10 for Expectimax
and Minimax and the number of trials of 100 for Monte Carlo were selected. These
values were suitable as they balanced speed, memory, and correctness evenly among
the three algorithms.

Code Design

The code is comprised of three main components: the main solver, individual algo-
rithms search methods, and the simulations script. The bulk of the code was the
implementation of the individual algorithms. Luckily the forked code base provided
an easy integration of the algorithms. These functions were used to select the best
possible move given the current state of the game board. The game board was a
C++ class that abstracted away all the game mechanics behind functions for the car-
dinal direction movements. Additionally, it had several helper functions that aided
in the algorithm’s implementation as well as statistic generation. The main solver
was very rudimentary, it ran the search method for each move and logged the number
of moves. The main solver also had several helper functions involved with the snake
heuristic. Notably, a heuristic score function which all three of the algorithms used
to determine the best move. Upon reaching a terminate state, the statistics were
printed to standard out. Nonetheless, the main solver would continue to run the
search algorithm until it reached a terminate state. This was crucial as the C script
redirected these printed statistics into a CSV file.

The C script design is a basic master-worker model, where a master process
spawns a batch of processes. Using the input parameters of the main solver exe-
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cutable, the script can change the algorithm used. Additionally, it can control the
depth and number of simulations. These parameters are passed from the script’s
input into the exec calls within the child processes. The parent controls all the
child processes and waits for them to terminate before running the next batch. The
batches were used to control the number of processes running to ensure each had
enough resources and CPU time. Additionally, the script had an alarm that would
activate after 6 minutes to kill any processes that failed to terminate. This was to
ensure that the script doesn’t get infinitely stuck on a process preventing the next
batches from running.

Experiment Results

In total, 2941 simulations were run—approximately 1000 trials for each algorithm. If
after six minutes a trial had yet to conclude, it would be terminated. This prevented
the process executing that trial from consuming machine resources for excessive
durations of time. It is possible that this affected the maximum score found by
each algorithm, however, it should have minimal impact on the overall trends in
the experiment’s data. The C program aggregated data from each trial into CSV
files. This included whether or not the simulation ”won” (meaning it generated at
least one 2048 tile), the final score of the simulation, the highest tile generated, the
number of moves completed before reaching a terminal state, and the time the trial
took in seconds. R scripts were then applied to the CSV files to produce visual
representations of the data.

Monte Carlo Tree Search

957 simulations were successfully run employing Monte Carlo Tree Search. Of the
simulations, the highest score produced was 60,628 from 3239 moves with a runtime
of 22.337 seconds. Furthermore, additional statistics regarding the Monte Carlo Tree
Search trials can be found in Table 1.

Means Medians
Score Moves Time Score Moves Time

21900.44 1361.839 18.575 16492 1141.0 10.654

Table 1: Monte Carlo Data

Figure 5 and shows the relationship between the total points and total moves
made for Monte Carlo Tree Search. In turn, Figure 6 depicts the relationship between
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Figure 5 Figure 6

the final score and seconds taken for each trial.

Figure 7 Figure 8

The box plot in Figure 7 gives a visualization for the varying distributions of
total moves for the highest value tiles generated. The histogram in Figure 8 plots
the frequency of the highest tiles for the Monte Carlo Tree Search simulations.

Expectimax

For Expectimax, 983 simulations were successfully completed. Of the simulations,
the highest score of 34,620 was achieved in 2,139 moves over 3.650 seconds. Table
2 has additional statistics with respect to the Expectimax trials’ scores, moves, and
time.

Figure 9 is a scatter plot that compares the total score in a trial with the moves
completed in that trial. This graph excludes an outlier that highly skews the rest of
the data found. Figure 10 in turn compares the final score of a trial and the duration
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Means Medians
Score Moves Time Score Moves Time

10921.70 1645.798 1.876 11444 796.0 1.863

Table 2: Expectimax Data

of the trial. The following graph, Figure 11 shows how the number of moves varies
with respect to the highest tile generated. The last graph for Expectimax is Figure
12, which illustrates the frequency of values for each highest tile.

Figure 9 Figure 10

Figure 11 Figure 12

Minimax

998 simulations were successfully run using the Minimax algorithm. The highest
score of the Minimax trials was 78,536 after 3,604 moves in 14.580 seconds. Table 3
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Means Medians
Score Moves Time Score Moves Time

22332.38 1201.484 7.322180 18048 1068.5 5.025

Table 3: Minimax Data

The graph in Figure 13 plots each trial’s total score and the total moves taken to
get there. In addition, Figure 14 shows the relationship between the final score and
the time taken in a trial. Figure 15 aids to visualize the distribution in total moves
depending on the value for a trial’s highest tile. Figure 16 shows the frequency for
each value for the highest tile.

Figure 13 Figure 14

Figure 15 Figure 16
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Analysis

When examining the graphs that compare the total points with total moves executed
by each algorithm, it is evident that there is a linear correlation between the two.
Thus, we can fit a linear regression model to each. This can be seen in Table 4.

Monte Carlo Expectimax Minimax
Slope 18.54 16.39 22.26
R2 0.9926 0.9785 0.9893

Table 4: Total Points vs. Moves Models

The linear regression models were fit excluding extreme outliers. A data point
was considered an outlier if it varied from the upper and lower quartiles more than
1.5 times the range between the upper and lower quartiles (IQR). The slope of
these regression models can be interpreted as the change in points achieved per
additional move accomplished. Although this model would allow for a prediction
of total points in a trial based on the number of moves made, this application is
not particularly useful in the context of the algorithms’ performance since the vast
possible combination of actions and states makes it very difficult to predict the
result of a trial. Instead, it can be used to examine how much each action picked by
a specific algorithm improved the score. As the slope found increases, it indicates
more favorable moves chosen by an algorithm. For Monte Carlo Tree Search, the
slope was 18.54, and on average, the score increased by 18.54 points for each move
chosen by MCTS. Expectimax had the smallest slope with a change of 16.39 points
per move. Minimax had the greatest slope of 22.26, meaning it tended to pick better
moves than both MCTS and Expectimax. Thus, Minimax selects the highest-scoring
moves in general.

In turn, an R2 value was calculated for each of these regression models. This is
1−RSS

TSS
, where RSS is the residual sum of squares and TSS is the total sum of squares.

R2 is a measure of how well the regression model fits the data. The R2 value for the
relationship between total points and total moves for MCTS is 0.9926, which means
99.26% of the variability in the total score can be explained by its relationship with
the total moves made. Similarly for Expectimax and Minimax respectively, 97.85%
and 98.93% of variability in the trials’ of the total score can be explained by its
relationship with the number of moves made.
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Trial Times

Both mean and median runtime for each algorithm were calculated. Since several
outliers were present in the data, the median can be more telling for the overall
performance of these samples. The median time was 10.654 seconds for MCTS,
1.863 seconds for Expectimax, and 5.025 seconds for Minimax. While Expectimax
performed the worst in terms of highest score achieved, median score, and the slope
of its regression model, it was substantially faster than the two other algorithms. The
scatter plots of final score and time all show direct relationships. However, a linear
regression model cannot be fitted to these since they ”fan” out. As time increased,
variation in the final score increased.

Highest Tiles found

A box plot and a histogram were created for MCTS, Expectimax, and Minimax. The
first gives insight on the distribution of moves taken with respect to the highest tile
found by that trial. It can be seen in the histograms that the highest tile found by
MCTS was 4096, 13 times. The highest tile for Expectimax was 2048, 52 times. The
highest tile found by Minimax was 4096, 41 times. According to the rules of the game,
and obvious in its name, a ”win” occurs when the 2048 tile is generated. MCTS won
the highest proportion of its trials with 48.40% resulting in wins. Expectimax trials
had the lowest proportion of wins at only 5.29%. Minimax had a win rate of 47%.
In terms of this, MCTS and Minimax had comparable proportions of wins, while
Expectimax underperformed significantly.

Outliers

In the Expectimax data, several outliers could have skewed our trend line. While
our calculations ignored outliers, the original data contained several. However, it
does point to some oddities as the other data sets did not contain as many out-
liers. Without seeing the exact game states we cannot say for sure what happened.
However, it could have been a software issue, such as the agent getting stuck in a
non-terminal state while still merging any new tiles. Regardless, these data points
had a low impact on the final analysis.
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Conclusion

The goal of these experiments was to compare how three different algorithms fared
at solving the well-known 2048 puzzle game. Monte Carlo Tree Search, Expectimax,
and Minimax are widely used algorithms in the artificial intelligence field—especially
in the context of solving puzzles and games. Thus, it seemed likely that these three
approaches would be effective in solving the game. Through nearly 3000 discrete
trials, Minimax performed the best in terms of attaining the highest score, highest
median score, and choosing moves that produced greater increases in score. These
results were marginally better than those for Monte Carlo Tree Search, yet had a
median run time less than 50% of MCTS. Expectimax had the lowest high score,
median score, and win percentage. However, it did have the fastest execution time.
An area that can be expanded on is the search depth of Expectimax and Minimax.
Due to machine resource limitations, the search depths needed to be limited such
that trial runtimes weren’t unreasonably long. This could lead to improvements
in solutions found by Expectimax and Minimax. In addition, alternative weight
matrices used in the evaluation function could be refined to produce better over-all
simulations.
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